

Topic 8: Cascading Style Sheets

Display Property

A-Level Information Technology

Lecture Contents

● Evolution
● CSS1 to CSS2.1 features

– inline, block, inline-block

● CSS3 features
– flex, grid

Evolution

● Many features of web design evolved over time
– To understand why we have certain features, we often need to understand

this evolution.
– The web is currently using CSS version 3 (CSS3)

Evolution of the display property

● CSS1
– block: start on a new line; take up the full width available

– inline: continue the line; take up only as much width as necessary

● CSS2
– none: hides and no effect on layout (unlike hidden property!)

● CSS2.1
– inline-block: continues the line; takes up only as much width as

necessary; add features unavailable with inline
● set width and height respected
● common use case: html list → menu displayed horizontally

Evolution of the display property
.inline {
 display: inline;
 width: 100px;
 height: 100px;
 background-color: #add8e6;
}

.block {
 display: block;
 width: 100px;
 height: 100px;
 background-color: #90ee90;
}

.inline-block {
 display: inline-block;
 width: 100px;
 height: 100px;
 background-color: #f08080;
}

<h2>Inline element with width, height</h2>

<p class="inline">Hello</p>
<p class="inline">World</p>

<h2>Block element with width, height</h2>

<p class="block">Hello</p>
<p class="block">World</p>

<h2>Inline-Block element with width, height</h2>

<p class="inline-block">Hello</p>
<p class="inline-block">World</p>

</body>
</html>

Evolution of the display property

● Examples of elements that are inline by default

– span, a, img, …

● Examples of elements that are block by default

– div, h1, p, form, header, footer, …

each highlighted example is the generic tag

Evolution of the display property

● CSS3
– contents: container disappears; children become children of next level

up in the DOM.

– flex: efficient layout, alignment, distribution of space in a container,
even when child sizing is unknown or dynamic

– grid: two-dimensional arrangement using rows and columns

CSS display: flex

● Applied to the parent of the elements to be styled
●

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flexbox1 {
 background-color: #add8e6;
}
.flexbox2 {
 background-color: #90ee90;
}
.flexbox3 {
 background-color: #f08080;
}

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
 display:flex;
 background-color: yellow;
 /* justify-content: flex-start */
}

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
 display:flex;
 background-color: yellow;
 justify-content: center;
}

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
 display:flex;
 background-color: yellow;
 justify-content: space-between;
}

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
 display:flex;
 background-color: yellow;
 justify-content: space-around;
}

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
 display:flex;
 background-color: yellow;
 justify-content: space-around;
}

CSS display: flex
<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

.flexbox1 {
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox1 {
 min-height: 60px;
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
 /* align-items: stretch; */
}
.flexbox1 {
 min-height: 60px;
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
 align-items: flex-start;
}
.flexbox1 {
 min-height: 60px;
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
 align-items: flex-end;
}
.flexbox1 {
 min-height: 60px;
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
 align-items: center;
}
.flexbox1 {
 min-height: 60px;
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
 /* flex-wrap: nowrap; */
}
.flexbox1 {
 min-width: 300px;
}
.flexbox2 {
 min-width: 300px;
}
.flexbox3 {
 min-width: 300px;
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
 flex-wrap: wrap;
}
.flexbox1 {
 min-width: 300px;
}
.flexbox2 {
 min-width: 300px;
}
.flexbox3 {
 min-width: 300px;
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
 flex-wrap: wrap-reverse;
}
.flexbox1 {
 min-width: 300px;
}
.flexbox2 {
 min-width: 300px;
}
.flexbox3 {
 min-width: 300px;
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
 display:flex;
 background-color: yellow;
 flex-direction: column;
 /* align-items: stretch */
}
.flexbox1 {
 background-color: #add8e6;
}
.flexbox2 {
 background-color: #90ee90;
}
.flexbox3 {
 background-color: #f08080;
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
 display:flex;
 background-color: yellow;
 flex-direction: column;
 align-items: flex-start;
}
.flexbox1 {
 background-color: #add8e6;
}
.flexbox2 {
 background-color: #90ee90;
}
.flexbox3 {
 background-color: #f08080;
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
 display:flex;
 background-color: yellow;
 flex-direction: column;
 align-items: center;
}
.flexbox1 {
 background-color: #add8e6;
}
.flexbox2 {
 background-color: #90ee90;
}
.flexbox3 {
 background-color: #f08080;
}

<div class="flex-container">
 <div class="flexbox-item flexbox1">Hello</div>
 <div class="flexbox-item flexbox2">There,</div>
 <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
 /* flex-direction: row; */
 align-items: center;
}
.flexbox1 {
 min-height: 60px;
}
.flexbox2 {
 max-height: 30px;
}
.flexbox3 {
}

Note the align-items is in relation
to the major axis – which is the x-axis
for row and y-axis for column

CSS display: flex

● For the flex container:
– flex-shrink: zero means do not shrink below initial size; positive

number shrink value relative to other flex items; default value 1.

– flex-grow: grow factor relative to other flex items; default value 0,
meaning it will not grow.

– flex-basis: initial size of flex item before shrink/grow; default value
is the contents of the box (or set box sizing); if set to zero, the growth
calculation will not start from initial size

CSS display: flex

● For the flex container:
– order: change the order to display the flex box items.

● Perhaps not the best way to do things: change the HTML?
● Doesn’t change the order for screen readers?

CSS display: grid

● Coming Soon!

Topic 8: Cascading Style Sheets

Display Property

A-Level Information Technology

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

