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Lecture Contents

● Evolution
● CSS1 to CSS2.1 features

– inline,  block,  inline-block

● CSS3 features
– flex,   grid



  

Evolution

● Many features of web design evolved over time
– To understand why we have certain features, we often need to understand 

this evolution.
– The web is currently using CSS version 3 (CSS3)



  

Evolution of the display property

● CSS1
– block: start on a new line; take up the full width available

– inline: continue the line; take up only as much width as necessary

● CSS2
– none: hides and no effect on layout (unlike hidden property!)

● CSS2.1
– inline-block: continues the line; takes up only as much width as 

necessary; add features unavailable with inline
● set width and height respected
● common use case: html list → menu displayed horizontally



  

Evolution of the display property
.inline {
  display: inline;
  width: 100px;
  height: 100px;
  background-color: #add8e6;
}

.block {
  display: block;
  width: 100px;
  height: 100px;
  background-color: #90ee90;
}

.inline-block {
  display: inline-block;
  width: 100px;
  height: 100px;
  background-color: #f08080;
}

<h2>Inline element with width, height</h2>

<p class="inline">Hello</p>
<p class="inline">World</p>

<h2>Block element with width, height</h2>

<p class="block">Hello</p>
<p class="block">World</p>

<h2>Inline-Block element with width, height</h2>

<p class="inline-block">Hello</p>
<p class="inline-block">World</p>

</body>
</html>



  

Evolution of the display property

● Examples of elements that are inline by default

– span, a, img, …

● Examples of elements that are block by default

– div, h1, p, form, header, footer, …

each highlighted example is the generic tag



  

Evolution of the display property

● CSS3
– contents: container disappears; children become children of next level 

up in the DOM.

– flex: efficient layout, alignment, distribution of space in a container, 
even when child sizing is unknown or dynamic

– grid: two-dimensional arrangement using rows and columns



  

CSS display: flex

● Applied to the parent of the elements to be styled
●



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flexbox1 { 
    background-color: #add8e6;
}
.flexbox2 {
    background-color: #90ee90;
}
.flexbox3 {
    background-color: #f08080;
}



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
    display:flex;
    background-color: yellow;
    /* justify-content: flex-start */
}



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
    display:flex;
    background-color: yellow;
    justify-content: center;
}



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
    display:flex;
    background-color: yellow;
    justify-content: space-between;
}



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
    display:flex;
    background-color: yellow;
    justify-content: space-around;
}



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flex-container {
    display:flex;
    background-color: yellow;
    justify-content: space-around;
}



  

CSS display: flex
<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

.flexbox1 {
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox1 {
    min-height: 60px;
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
    /* align-items: stretch; */
}
.flexbox1 {
    min-height: 60px;
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
    align-items: flex-start;
}
.flexbox1 {
    min-height: 60px;
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
    align-items: flex-end;
}
.flexbox1 {
    min-height: 60px;
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
    align-items: center;
}
.flexbox1 {
    min-height: 60px;
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
    /* flex-wrap: nowrap; */
}
.flexbox1 {
    min-width: 300px;
}
.flexbox2 {
    min-width: 300px;
}
.flexbox3 {
    min-width: 300px;
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
    flex-wrap: wrap;
}
.flexbox1 {
    min-width: 300px;
}
.flexbox2 {
    min-width: 300px;
}
.flexbox3 {
    min-width: 300px;
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
    flex-wrap: wrap-reverse;
}
.flexbox1 {
    min-width: 300px;
}
.flexbox2 {
    min-width: 300px;
}
.flexbox3 {
    min-width: 300px;
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
    display:flex;
    background-color: yellow;
    flex-direction: column;
    /* align-items: stretch */
}
.flexbox1 {
    background-color: #add8e6;
}
.flexbox2 {
    background-color: #90ee90;
}
.flexbox3 {
    background-color: #f08080;
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
    display:flex;
    background-color: yellow;
    flex-direction: column;
    align-items: flex-start;
}
.flexbox1 {
    background-color: #add8e6;
}
.flexbox2 {
    background-color: #90ee90;
}
.flexbox3 {
    background-color: #f08080;
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flex-container {
    display:flex;
    background-color: yellow;
    flex-direction: column;
    align-items: center;
}
.flexbox1 {
    background-color: #add8e6;
}
.flexbox2 {
    background-color: #90ee90;
}
.flexbox3 {
    background-color: #f08080;
}



  

<div class="flex-container">
  <div class="flexbox-item flexbox1">Hello</div>
  <div class="flexbox-item flexbox2">There,</div>
  <div class="flexbox-item flexbox3">World</div>
</div>

CSS display: flex

.flexbox-container {
    /* flex-direction: row; */
    align-items: center;
}
.flexbox1 {
    min-height: 60px;
}
.flexbox2 {
    max-height: 30px;
}
.flexbox3 {
}

Note the align-items is in relation
to the major axis – which is the x-axis
for row and y-axis for column



  

CSS display: flex

● For the flex container:
– flex-shrink: zero means do not shrink below initial size; positive 

number shrink value relative to other flex items; default value 1.

– flex-grow: grow factor relative to other flex items; default value 0, 
meaning it will not grow.

– flex-basis: initial size of flex item before shrink/grow; default value 
is the contents of the box (or set box sizing); if set to zero, the growth 
calculation will not start from initial size



  

CSS display: flex

● For the flex container:
– order: change the order to display the flex box items.

● Perhaps not the best way to do things: change the HTML?
● Doesn’t change the order for screen readers?



  

CSS display: grid

● Coming Soon!
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